WORKING PAPER 2020-02

REPA

Resource Economics & Policy Analysis Research Group

Department of Economics University of Victoria

Crop Yields, Carbon Dioxide, and Temperature: A Meta-Analysis

Brennan McLachlan, G. Cornelis van Kooten and Zehan Zheng

February 2020

Copyright 2020 by B. McLachlan, G.C. van Kooten and Z. Zheng. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.

For copies of this or other REPA working papers contact:

REPA Research Group Department of Economics University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 CANADA repa@uvic.ca

http://web.uvic.ca/~repa/

This working paper is made available by the Resource Economics and Policy Analysis (REPA) Research Group at the University of Victoria. REPA working papers have not been peer reviewed and contain preliminary research findings. They shall not be cited without the expressed written consent of the author(s).

Crop Yields, Carbon Dioxide, and Temperature: A Meta-Analysis

1	
2	
3	Brennan McLachlan,
4	G. Cornelis van Kooten
5	and
6	Zehan Zheng
7	
8	Department of Economics
9 10	University of Victoria Victoria, BC V8W 2Y2
11	
12	
13	Draft: 12 February, 2020
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	© Brennan McLachlan, G. Cornelis van Kooten and Zehan Zheng, 2020. All rights reserved. This
24	extended essay may not be reproduced in whole or in part, by photocopy or other means, without
25	the permission of the authors.

Abstract

27 Food insecurity has been identified as one of the potential dire consequences of climate change. For the most part, the impact of increasing atmospheric CO₂ on crop yields has received much less 28 29 attention. Higher levels of CO_2 in the atmosphere are associated with increased water efficiency 30 in plants and higher yields. Thus, increased atmospheric CO₂ can serve as a mitigating factor, 31 without which it would be easy to overestimate the negative impacts of rising temperatures. We 32 collect observations from studies that have examined crop yields at elevated levels of CO₂ relative 33 to ambient levels. We then employ meta-regression analysis to explore the effect that CO₂, 34 temperature, and their interactive effects have on crop yields, using control variables to account 35 for other factors such as location, technology, et cetera. We find that raised levels of CO₂ are a 36 significant determinant of crop yields, with a failure to account for a CO₂-fertilization effect 37 potentially leading to an exaggeration of the threat that climate change poses for food security. We also found that there is insufficient information about the impact that CO₂ has on yields in many 38 39 regions. More regional trials are needed, particularly in arid regions in developing countries where 40 the risk of food insecurity from climate change is greatest.

41

42 Key words: Climate change and crop yields; Food security; Meta-regression analysis; CO₂-

43 fertilization and heat effects in agriculture

44 **JEL**: Q18, Q54

1. INTRODUCTION

Climate change is one of the most contentious policy issues of the early 21st Century. In December 46 47 2015, nations signed the Paris Agreement, which aims "to strengthen the global response to the 48 threat of climate change by keeping a global temperature rise this century well below 2 degrees 49 Celsius above pre-industrial levels and to pursue efforts to limit the temperature increase even 50 further to 1.5 degrees Celsius. Additionally, the agreement aims to strengthen the ability of 51 countries to deal with the impacts of climate change"[1]. Likewise, the U.S. Fourth National 52 Climate Assessment (NCA) fears that "climate change creates new risks and exacerbates existing 53 vulnerabilities in communities across the United States, presenting growing challenges to human 54 health and safety, quality of life, and the rate of economic growth" [2].

55 There has been extensive research on the effects of increased atmospheric carbon dioxide 56 (CO_2) and rising temperatures on crop yields, although the impact of CO_2 on crop yields has been 57 downplayed or even ignored. For example, Lobell and Field [3] simulated crop yields using FAO 58 crop yield data but ignored a potential CO₂-fertilization effect. These authors found large 59 significant negative effects on regional yields from global warming, but their conclusions may 60 well have been quite different if CO_2 had been considered. One needs to look at farm-level data to 61 observe CO₂ fertilization effects because regional data on a global scale are not readily available. 62 In the current study, therefore, we consider field-level and greenhouse studies to determine the 63 potential effect that climate change could have on crop yields in various parts of the world.

Rising atmospheric CO_2 affects crop yields by increasing the rate of photosynthesis and water-use efficiency. Deryng et al. [4] found that the ratio of crop yields to the rate of evapotranspiration will likely increase by 10 to 27 percent by 2080, with much less water required to achieve the same yields. This is crucial given the extent of population growth projected for the 68 next fifty or more years, although projections of population growth remain contentious [5]. The 69 researchers employ a modelling approach and project crop yields in 2080 under climate change 70 with and without a CO₂-fertilization effect. In the no CO₂-fertilization scenario, severe negative 71 effects on crop yields occur; but when CO₂ fertilization is taken into account, these negative effects 72 are "fully compensated for in wheat and soybean, and mitigated by up to 90% for rice and 60% 73 for maize" [4 p787]. They conclude that rising atmospheric CO₂ can ultimately provide 74 opportunities to increase food production to meet population growth without straining water 75 resources, particularly in semi-arid and arid regions with rainfed crops.

76 Free-air carbon enrichment (FACE) field experiments were developed due to biased results 77 from experiments that do not accurately reflect field conditions [6]. Controlled environment, 78 closed-top, and laboratory studies do not reflect typical field settings [7]. Conclusions drawn from 79 enclosed ('glasshouse') experiments are not always convincing, which led to the development of 80 open-field exposures. FACE experiments get around the 'realism' problem by conducting 81 experiments at artificial levels of elevated CO_2 where all else is truly equal. This is achieved by a 82 state-of-the-art system that measures the concentration of CO_2 in the plot space and releases CO_2 83 from an on-site tank based on the direction and speed of wind – measured by a weathervane at the 84 center of the plot [6]. When the wind is blowing toward the north, for example, the computer 85 releases CO₂ from the south end of the array so that it blows over the entire array. The computer 86 automatically shuts off the CO₂ using an infra-red gas analyzer after the target level is achieved. 87 Air temperatures are also continually recorded, allowing analysis of both temperature and CO_2 88 effects. Hendry et al. [6] demonstrate how closely and non-invasively the FACE experiments 89 replicate field conditions. The inclusion of control plots (located 100m away from the treatment 90 plots) makes these experiments ideal for measuring the direct impacts of CO₂ enrichment under

91 local climate conditions. An additional benefit of the FACE experiments is their ability to compare
92 wet and dry conditions at ambient and elevated levels of CO₂, thereby providing insights into how
93 water resources might be constraining under future climate scenarios.

94 The implications of an increasing concentration of CO_2 in the atmosphere are important 95 for food security, where much of the conversation focuses on global warming. This is especially 96 important for developing countries located in arid regions where crop yield efficiencies are lower 97 and water is scarcer than in developed countries. To concern ourselves with only the negative 98 impacts of global warming would be short-sighted. In the current study, therefore, we conduct a 99 meta-regression analysis of experiments that have examined crop yields under elevated CO₂ at 100 different temperatures to identify the effect that higher temperatures and enhanced CO₂, and their 101 interaction, might have on crop yields.

102

2. METHODS: META-ANALYSIS IN ECONOMICS

Meta-analysis is the process of collecting data from multiple sources, combining them into one dataset, and identifying patterns across studies. Meta-analyses are typically concerned with questions of consistency across studies. In the present analysis, we use meta-regression analysis to analyse a large dataset to evaluate the effect of climate change on crop yields at the farm level. We utilize meta-regression analysis "to summarize a set of related studies" in the crop science literature [8]. There are several reasons why a meta-regression analysis differs somewhat from a simple meta-analysis.

110 One feature of meta-analysis is that the outcome variables, crop yields in our case, tend to 111 be correlated within studies due to experimental conditioning and uncorrelated with the yields 112 found in other studies. One way to overcome this specific form of dependence is to adopt a robust 113 variance estimator for cluster-correlated data [9]. Thus, we utilize standard errors clustered at the study level, which allows for correlation among observations within studies (an artefact of the experimental setting), while assuming independence between observations from different studies. This provides robust standard errors under the assumption that inter-cluster observations are independent.

118 Data Sources and Description

We construct a dataset consisting of information from 47 studies completed between 1977 and 2016, and comprising 514 observations. We systematically searched Google Scholar and Science Direct using keywords such as 'elevated CO_2 ', 'crop yields', and 'FACE', and selected published articles that sought to test plant yields at ambient and elevated levels of CO_2 . We also looked up the references in published articles to discover additional sources of data.

One concern with our methodology is the coverage of studies. We intend for the analysis to have sufficient observations to enable us to establish the effect that CO_2 and heat (temperature) have on crop yields; however, we do not and cannot conduct a comprehensive analysis of the current scientific literature. The reason is that the current economic study concerns the aforementioned relationship between crop yields and CO_2 and heat, as opposed to a summary of the current literature on crop yields under elevated CO_2 .

For each study in our analysis, we recorded crop yields in tonnes per hectare (t/ha) or grams per plant (g/plant), CO₂ in parts per million (ppm) by volume, the average growing-season temperature in degrees Celsius (°C), the type of experiment, and the year of the study. When a study contained day and night temperatures, we took an average weighted by the day/night schedule reported, or, when only a maximum and minimum temperature were reported, a simple average. We determined the location in which each experiment was undertaken and recorded the location in terms of longitude and latitude. There were six types of experiments: Free Air Carbon 137 Enrichment (FACE) studies and studies that employed laboratory, controlled-environment 138 chambers, closed- and open-top chambers, and glasshouse experiments. Crop data were collected 139 from four regions: North America, Europe, Asia and Oceania. Quadratic terms for CO_2 and 140 temperature, as well as their interaction, were constructed.

141 Summary statistics for studies that measured yields in t/ha and g/plant are reported in 142 Tables 1 and 2, respectively. Yields vary between crops due to the nature of the harvesting process, 143 with rice yields much higher than those of other crops. The variations in CO₂ and recorded 144 temperatures were ideal for our identification strategy. The means for all dummy variables 145 (indicated by a minimum and maximum of 0 and 1, respectively) represent the proportion of 146 studies belonging to the category in question. For example, a mean of 0.204 for Europe in Table 1 147 indicates 20.4% of t/ha studies were conducted in Europe; a mean of 0.365 for rice indicates that 148 36.5% of t/ha studies involved rice. We discovered one study that subjected crops to extreme 149 temperatures and a concentration of CO₂ of upwards to 10,000 ppm. There were no FACE studies 150 that reported yields in g/plant (Table 2). The magnitude of yields when measured in g/plant appear 151 much higher than yields in t/ha, but the two measures are not directly comparable nor are the 152 experiments conducted using these measures of yield.

Major inputs such as nitrogen, phosphate and potassium were not measured nor reported in the vast majority of the studies we examined, with the information on these omitted variables relegated to the error terms. We use the location reported in each study to control for variations in yield related to biogeographical differences other than temperature. When location was not specified, we took the country in which the study was published and used its midpoint latitudelongitude coordinates. We attempted to collect precipitation/irrigation data, but surprisingly few studies reported this information, although it is redundant in the case of paddy rice grown in 160 flooded fields. Further, we ignored studies that measured biomass or the number of grains, relying 161 exclusively on studies that examined how crop yields responded to changes in atmospheric CO₂ 162 and temperature. This allows us to examine the potential damage to the agricultural sector as a 163 result of climate change.

max	min	Sd	Mean	Ν	Variables
14	0	3.122	6.221	299	Yield (t/ha)
10,000	140	640.0	553.9	299	CO ₂ (ppm)
36.20	9	6.340	21.07	299	Temperature (°C)
2016	1977	9.648	1998	299	Year of study
1	0	0.500	0.468	299	Asia
1	0	0.404	0.204	299	Europe
1	0	0.388	0.184	299	North America
1	0	0.351	0.144	299	Oceania
1	0	0.287	0.0903	299	Maize
1	0	0.482	0.365	299	Rice
1	0	0.219	0.0502	299	Soybean
1	0	0.388	0.184	299	Spring wheat
1	0	0.464	0.311	299	Wheat
0	0	0.341	0.134	299	Free Air Carbon Enrichment
1	0	0.385	0.181	299	Closed-top chamber
1	0	0.330	0.124	299	Controlled-environment chamber
1	0	0.151	0.0234	299	Field study
1	0	0.189	0.0368	299	Glasshouse
1	0	0.262	0.0736	299	Laboratory
1	0	0.496	0.428	299	Open-top chamber

164 Table 1: Summary Statistics for Studies that Measure Yields in tonnes per hectare

165

max	min	Sd	Mean	N	Variables
336.8	0	58.22	43.25	215	Yield (grams/plant)
					$CO_2 (ppm)$
1000	160	158.0	545.9	215	· · · ·
40	14	6.731	24.24	215	Temperature (°C)
2013	1981	6.281	1996	215	Year of study
1	0	0.458	0.298	215	Asia
1	0	0.404	0.205	215	Europe
1	0	0.499	0.456	215	North America
1	0	0.201	0.0419	215	Oceania
1	0	0.165	0.0279	215	Maize
1	0	0.487	0.381	215	Rice
1	0	0.420	0.228	215	Soybean
1	0	0.255	0.0698	215	Spring wheat
1	0	0.456	0.293	215	Wheat
1	0	0.118	0.0140	215	Closed-top chamber
1	0	0.481	0.358	215	Controlled-environment chamber
1	0	0.201	0.0419	215	Field study
1	0	0.411	0.214	215	Glasshouse
1	0	0.263	0.0744	215	Laboratory
1	0	0.458	0.298	215	Open-top Chamber

166 **Table 2: Summary Statistics for Studies that Measure Yield in grams per plant**

Employing White's [10] test for homoskedasticity, we found evidence of heteroskedasticity and thus adopted heteroskedasticity-robust standard errors for all regression models. The data sources are reported in Table 3. We omit four of the six observations from [11] as they conduct experiments at extreme levels of CO₂ (up to 10,000 ppm), and are thus treated as outliers; indeed, observations where CO₂ exceeded 1,000 ppm are omitted from further consideration as they do not provide a meaningful contribution to the present analysis.

174

	# of			Mean		C	O ₂
Study	Obs	Location	Crop	yield	Units	Min	Max
Abebe et al. [12]	12	India	Maize	4.99	t/ha	397	550
Allen Jr. et al. [13]	23	U.S.	Rice	5.62	t/ha	330	660
Baker [14]	38	U.S.	Rice	12.46	g/pl	358	705
Baker et al. [15]	6	U.S.	Rice	2.28	g/pl	160	900
Baker et al. [16]	4	U.S.	Rice	6.33	t/ha	330	660
Baker et al. [17]	6	U.S.	Soybean	11.07	g/pl	330	660
Batts et al. [18]	22	U.K.	Wheat	8.53	t/ha	365	698
Bugbee et al. [19]	10	U.S.	Wheat & rice	5.82	t/ha	340	680
Conroy et al. [20]	9	Australia	Wheat	23.86	g/pl	350	900
Fiscus et al. [21]	12	U.S.	Soybean	156.3	g/pl	360	700
Gifford [22]	16	Australia	Wheat	4.61	t/ha	340	590
Gifford [23]	3	Australia	Wheat	9.7	t/ha	140	490
Heagle et al. [24]	18	U.S.	Wheat	12.74	g/pl	379	707
Kimball et al. [8]	4	U.S.	Wheat	7.63	t/ha	370	550
Ianderscheid & Weigel [25]	6	Germany	Wheat	25.83	g/pl	372	539
Ianderscheid & Weigel [26]	12	Germany	Spring wheat	16.46	g/pl	379	689
Mayeux et al. [27]	8	U.S.	Wheat	1.69	t/ha	200	350
Mckee & Woodward [28]	16	U.K.	Wheat	2.66	g/pl	400	700
Meng et al. [29]		China	Maize		01		
Moya et al. [30]	36	Philippines	Rice	4.80	t/ha	370	665
Mulholland et al. [31]	6	U.K.	Spring wheat	7.05	t/ha	379	700
Mulholland et al. [32]	6	U.K.	Spring wheat	9.60	t/ha	384	682
Otera et al. [33]	24	Japan	Soybean	39.98	g/pl	389	589
Pleijel et al. [34]	11	Sweden	Spring wheat	5.88	t/ha	347	675
Prasad et al. [35]	3	U.K.	Soybean	18.25	g/pl	160	660
Qiao et al. [36]	30	China	Soybean & maize	5.92	t/ha	394	705
Rawson [37]	24	Australia	Wheat	7.52	t/ha	360	700
Reuveni & Bugbee [11]	6	Israel	Wheat	7.63	t/ha	350	10,00
Rudorff et al. [38]	6	U.S.	Wheat & maize	5.20	t/ha	350	500
Sionit et al. [39]	3	U.S.	Wheat	33.03	g/pl	350	1000
Teramura et al. [40]	12	U.S.	Wheat-rice-soybn	45.79	g/pl	350	650
van Oijen et al. [41]	8	Nederland	Spring wheat	7.19	t/ha	373	754
Wang et al. [42]	8	China	Rice	10.23	t/ha	390	590
Weigel et al. [43]	10	Germany	Wheat	27.41	g/pl	384	718
Wheeler et al. [44]	8	U.K.	Wheat	7.87	t/ha	380	713
Xiao et al. [45]	13	China	Spring wheat	1.25	t/ha	360	45
Xiao et al. [46]	7	China	Spring wheat	2.17	t/ha	364	40
Yang et al. [47]	16	China	Rice	10.12	t/ha	383	58
Zhang et al. [48]	12	Japan	Rice	7.08	t/ha	379	58
Ziska et al. [49]	34	Philippines	Rice	68.94	g/pl	373	66

175 Table 3: Data Sources for Elevated CO₂ Experiments^a

¹⁷⁶ ^a Units indicate tonnes per hectare (t/ha) or grams per plant (g/pl).

All studies in our sample reported yields in elevated CO₂ on the treatment plot and on the control plot. We report the treatment and control results as two separate observations; thus, for a study that reports on four experiments, we would then have eight observations. Many studies have just one control variable upon which they report and many more observations of yields for variouslevels of CO₂.

182 Meta-Analysis Regression Model

Serial autocorrelation is not an issue because we do not have studies that provide measures of yield over time, but, rather, measures of yields from different studies conducted at different times. The variability in yield from one year to the next is negligible under controlled conditions, as it would only be affected by technological advancements such as new and improved cultivars; but we do use year dummies to account for time-related fixed effects. This leads us to believe that the yield of a study in a particular year is likely uncorrelated with other studies in previous years.

190
$$Y_i = \beta_0 + \beta_1 CO2_i + \beta_2 CO2_i^2 + \beta_3 T_i + \beta_4 T_i^2 + \beta_5 T_i \times CO2_i + \alpha_1 \operatorname{Crop}_i + \alpha_2 \operatorname{Type}_i + u_i,$$
 (1)

191 where Y_i measures the crop yield from study *i* in t/ha or g/plant; $CO2_i$ and T_i measure, respectively, 192 the carbon dioxide level and temperature (°C) employed in observation *i*; **Crop**_{*i*} is a vector of 193 dummy variables for the crops included in this study (see Tables 1 and 2); **Type**_{*i*} is a vector of 194 dummy variables containing all types of experiments; and β_i and α_i are coefficients or vectors of 195 coefficients to be estimated. Finally, the error structure is represented by u_i . We include the 196 interaction effect to test how the CO₂-fertlization effect varies with temperature.

For our final regression model, we de-mean the CO₂ and temperature data so that the model
takes the following final form:

199
$$Y_{i} = \beta_{0} + \beta_{1} \left(CO2_{i} - \overline{CO2_{i}} \right) + \beta_{2} \left(CO2_{i}^{2} - \overline{CO2_{i}^{2}} \right) + \beta_{3} \left(T_{i} - \overline{T_{i}} \right) + \beta_{4} \left(T_{i}^{2} - \overline{T_{i}^{2}} \right)$$
200
$$+ \beta_{5} \left(T_{i} - \overline{T_{i}} \right) \times \left(CO2_{i} - \overline{CO2_{i}} \right) + \alpha_{1} \operatorname{Crop}_{i} + \alpha_{2} \operatorname{Type}_{i} + u_{i},$$
(2)

201 This allows us to interpret the marginal effects as:

202
$$\frac{\partial Y}{\partial CO_2} = \beta_1 + 2\beta_2 CO2_i + \beta_5 (T_i - \overline{T}_i)$$
(3)

203
$$\frac{\partial Y}{\partial T} = \beta_3 + 2\beta_4 T_i + \beta_5 (CO2_i - \overline{CO2_i})$$
(4)

Upon estimating regression equation (2), the estimated parameter β_5 enables us to analyse the interaction effect on marginal crop yields using equations (3) and (4). We can also evaluate the marginal effect at the average values of *T* and CO₂, respectively, but doing so isolates the marginal effects, because the interaction effect is nullified at the averages. This is especially valuable in evaluating the turning points beyond which these effects lead to a reduction in crop yields.

209 The regression models are estimated using 295 observations that measured yield in t/ha 210 and 215 observations that measured it in g/plant. We cannot convert the g/plant observations to 211 t/ha as doing so requires us to make assumptions regarding how many plants are in a hectare, which 212 would require knowledge of sowing density, plant survival rates, et cetera. We employ 213 heteroskedastic-robust, ordinary least squares (OLS) regression for all specifications. We cluster 214 the standard errors at the study level to allow for correlation between observations within the same 215 study, but assume independence across studies. This accounts for heteroskedasticity across studies 216 by allowing a limited form of dependence between observations within the same study. This makes 217 sense in the context of the present analysis as observations from the same study are held at the 218 exact same conditions with respect to irrigation, solar irradiance, the chemical composition of the 219 air and soil, location and other factors.

220

3. RESULTS

In this section, we provide regression results stratified by units. We regress crop yields on CO_2 , temperature, the quadratic CO_2 and temperature terms, the interaction term, and the control variables using OLS. We display graphs of the relationship between crop yields, temperature, and

CO₂ in Figures 2 and 3, including simple quadratic lines fit to the data. We use the full model
specifications in each of our calculations of marginal effects.

Figure 1: Scatter Plot Values and Fitted Quadratic Functions, Crop Yields in tonnes/ha

Figure 2: Scatter Plot Values and Fitted Quadratic Functions, Crop Yields in g/plant

As shown in Figure 1, we observe that an increased concentration of CO_2 in the atmosphere has a positive but diminishing fertilization effect on yield, while rising temperatures tend to reduce yields. The CO_2 -fertilization effect is as anticipated, but one would also expect a positive effect for temperature followed by a tipping point beyond which further increases in heat reduce crop yields. We believe this to be due to the nature of our data – we employ data from studies that conducted experiments at various temperatures and we measured temperature as differences in those studies. The negative trend of temperature in the t/ha data is likely the result of studies that used very high temperatures, which tended to reduce yields relative to ambient yields.

239 When we examine the effect of higher atmospheric concentrations of CO_2 and surface 240 temperatures on yield measured in g/plant, we find that both fitted relations are quadratic, 241 indicating that there are turning points. This is shown in Figure 2. Notice the clusters of points at 242 different temperatures. This is a result of the nature of our data: If we found a study that recorded 243 yields at 300 and 600 ppm of CO₂, and the experiment was undertaken at 30°C, both yield 244 observations would appear as vertically connected (e.g., as seen in the right-hand panel of Figure 245 2); likewise, in the figure on the left, vertical points represent a particular change in temperature, 246 but different concentrations of CO₂, say.

247 The simple OLS regression results for crop yield measured in t/ha are provided in Table 4, 248 with the full model provided in column (3) of the table. When CO_2 and temperature are taken 249 together, the underlying partial effects are properly estimated. In the regression, different crops 250 have different intercepts, which constitutes a restriction that we address in a later section; however, 251 these restrictions imply that the partial effects are the same for each crop. It is also worth noting 252 that our data consist of controlled experiments where temperatures do not fluctuate throughout the 253 growing season, which likely explains the statistical insignificance of the temperature effects, although it could also be the result of insufficient data. We control for the type of experiment to 254 255 isolate variation in the variables of interest, but one cannot determine the marginal effect 256 attributable to the type of experiment as the experiment variable is binary.

Variables	(1)	(2)	(3) ^b
CO ₂	0.016**		0.026***
	(2.195)		(3.523)
CO ₂ -squared	-0.00001		-0.00002***
	(-1.600)		(-2.887)
Temperature		-0.012	0.128
		(0.061)	(0.629)
Temperature-squared		-0.009**	-0.009**
		(-2.189)	(-2.457)
$CO_2 \times temperature$			-0.0002
			(-1.412)
Maize	3.580^{*}	5.496***	5.171***
	(1.939)	(3.522)	(3.739)
Rice	-2.440***	4.730***	4.304***
	(-2.882)	(3.417)	(3.271)
Spring wheat	-1.099	1.964**	1.619^{*}
	(-1.342)	(2.006)	(1.789)
Soybean	-0.201	-0.040	-0.327
	(-0.109)	(-0.026)	(-0.240)
Constant	3.830***	-1.408	-0.541
	(4.348)	(-1.364)	(-0.551)
Observations	295	295	295
Adjusted R-squared	0.559	0.629	0.680

257 Table 4: Estimated Impact of CO₂ and Temperature on Crop Yields (t/ha)^a

^a Robust t-statistics in parentheses. Standard errors clustered at the study level. *** p<0.01,

259 ** p<0.05, * p<0.1

^b This specification uses de-meaned variables for CO₂ and temperature, as indicated in

261 equation (2).

Now consider yield measured in g/plant, with results provided in Table 5. As expected based on Figure 2, the CO_2 -fertilization effect has a positive impact on crop yields, but its effect diminishes with rising atmospheric CO_2 – the CO_2 -fertilization effect only works to amplify yields up to a certain critical threshold. Unlike the regressions in Table 4, the CO_2 effect appears to be statistically insignificant, perhaps due to too few observations. The negative sign on the linear term for CO_2 is likely incorrect as the estimated parameter is statistically insignificant, but it also results 268 in a marginal effect from the g/plant data that is likely incorrect. We report the marginal effects of

269 CO₂ and temperature from the final specifications for both yield measures in Table 6.

270

Variables	(1)	(2)	(3)
CO ₂	0.079**		-0.022
	(2.037)		(-0.379)
CO ₂ -squared	-0.00004		-0.00002
-	(-1.270)		(-0.506)
Temperature		11.896***	12.491***
		(3.754)	(4.168)
Temperature-squared		-0.207***	-0.252***
		(-4.169)	(-5.160)
$CO_2 \times temperature$			0.003**
			(2.454)
Maize	277.949***	230.669***	229.171***
	(21.835)	(10.883)	(11.655)
Rice	65.874***	56.884***	55.977***
	(7.090)	(8.649)	(9.646)
Spring wheat	-66.959***	-64.928***	-65.291***
	(-3.702)	(-3.401)	(-4.027)
Soybean	88.748^{***}	70.768^{***}	68.954^{***}
	(7.771)	(7.367)	(8.100)
Constant	-45.527**	-18.920	-17.667
	(-2.505)	(-0.828)	(-0.898)
Observations	215	215	215
Adjusted R-squared	0.922	0.918	0.927

271 Table 5: Estimated Impact of CO₂ and Temperature on Crop Yields (g/plant)^a

^a See footnotes on Table 4.

	Units	CO ₂	Temperature						
	t/ha	$0.026 - 0.00004 \text{ CO2} - 0.0002(\text{T} - \overline{\text{T}})$	$0.128 - 0.018 \text{ T} - 0.0002(\text{CO2} - \overline{\text{CO2}})$						
	g/plant	$-0.022 - 0.00004 \text{ CO2} - 0.003(\text{T} - \overline{\text{T}})$	$12.491 - 0.504 \text{ T} - 0.003(\text{CO2} - \overline{\text{CO2}})$						
274 275 276	CO_2 can be	d as the partial derivative of yield with respect to e evaluated at the mean of temperature such that tion effect. The same can be done for temperatur	we can evaluate the marginal effect without						
277	Tł	ne marginal effect of CO ₂ on crop yield from	n the t/ha data is positive until CO ₂ reaches						
278	650 ppm,	well outside the range of any currently envis	ioned scenario. The estimated parameter on						
279	the intera	ction term is not statistically different from	zero, so increases in temperature have no						
280	discernab	le effect on crop yields at the margin. Thus,	at no point within the current analysis can						
281	an increas	se in CO ₂ reduce crop yields at the average	temperature, or at any other temperature in						
282	our datase	our dataset. Nonetheless, the marginal effect of CO2 on crop yields is lower at higher temperatures.							
283	In	contrast, it appears that the marginal effe	ct from the g/plant regression is negative						
284	throughou	at. Even though the intercept term (-0.022)	is statistically insignificant, the estimated						
285	parameter	on the interaction term is statistically signif	ficant at the 5% level, indicating that yields						
286	decline w	rith higher temperatures. Absence of a positi	tive effect is likely an artefact of the data.						
287	Individua	l plant studies employed levels of CO ₂ that le	ed to little if any effect of marginal changes						
288	in CO ₂ or	n crop yields; in these studies, changes in te	emperature are the primary factor affecting						
289	crop yield	ds. Further, the results in Table 6 do not iso	late the effects of CO ₂ and temperature on						
290	particular	crops, something we examine more close	ely in the following section. Finally, the						
291	dependent	t variables are not directly comparable becau	se they are measured in different units. The						
292	positive C	CO ₂ -fertilization effect from the t/ha data is c	onsistent with the crop science literature.						
293	If	we were to evaluate the t/ha marginal eff	fect of CO ₂ at the average temperature, a						
294	projected	increase in atmospheric CO ₂ from 400 to 50	0 ppm, say, is associated with an increased						

2/3 I able 0: Marginal Effects of CO2 and Temperature	273	Table 6: Marginal Effects of CO ₂ and Temperature ^a
---	-----	---

yield of one tonne per hectare ($[0.026 - 0.00004 \times CO_2] \times \Delta CO_2 = [0.026 - 0.00004 \times 400] \times 100$). This is a considerable increase that would likely net out some of the negative future effects of temperature.

Based on the g/plant data, the increase in atmospheric CO_2 would be associated with a slight increase in yields as long as temperature also increased. The coefficients on the linear and quadratic CO_2 terms are statistically insignificant and it is only the coefficient on the CO_2 temperature interaction term that is slightly positive and statistically significant, thereby indicative of a CO_2 -fertilization effect.

303 If we consider the marginal effect of temperature, we find that, at the mean of CO₂, a 1°C 304 increase in mean surface temperature would decrease crop yield by about ¹/₄ tonne per hectare. If 305 we consider the marginal effect of temperature in the g/plant data, we derive a tipping point at 306 24.78°C on average (= 12.491/0.504), although this will differ from one crop to another.

307 4. ALLOWING EFFECTS TO VARY BY CROP

We now estimate the full model separately for each crop using the two yield measures, t/ha and g/plant, thereby allowing the marginal effects to vary from one crop to another. This is likely more representative of the true nature of the underlying relationships. A summary of the data associated with the individual crop regression analyses is found in Table 7. The regression results are provided in Tables 8 and 9, while the marginal impacts are provided in Table 10.

313 **Yield Measure: Metric Tons per Hectare**

The regression results for the case where yield is measured in t/ha are found in Table 8. Standard errors cannot be computed for soybean because the number of regressors exceeds the number of observations, so soybean were excluded from these results. We combine the winter and spring 317 wheat data as there is no fundamental difference in the cultivar used; only the timing at which each 318 is planted differs. That is, there is no statistical difference in the yields of winter and spring wheat 319 (see supplementary material). In the table, we provide the parameter estimates for various types of 320 experiments, but we do not show the estimated parameters on the geographic controls and other 321 dummy variables.

Crop	Observations	Yield	Temperature (°C)	CO ₂ (ppm)
Measure of Yield: tonnes per hectare (t/ha)				
Wheat ^b	148	6.1375	16.8764	604.0115
Maize	27	6.9115	24.7333	487.3959
Rice	109	6.5542	26.0835	509.9284
Soybean	15	3.3840	19.4000	498.2787
		Measure of Yield	: grams per plant (g/plant)	
Wheat ^c	78	16.2217	17.2885	546.2436
Maize	6	291.7233	30.0000	463.3333
Rice	82	37.4598	29.8159	583.0610
Soybean	49	65.5559	25.28571	493.2245

322 Table 7: Summary Statistics for Yields, CO₂ and Temperature, by Crop^a

^a Arithmetic means are used to compute marginal effects of temperature and CO₂ on yields.

[°] Since individual plants are examined, there is no distinction between winter and spring wheat.

326	The lack of significance on the estimated parameters for CO ₂ and temperature for maize is
327	likely due to data limitations (too few observations). In the case of rice, enhanced CO ₂ seems to
328	have little impact on yields, perhaps because the relationship is misidentified given the dominance
329	of paddy rice cultivation and/or the CO ₂ -fertilization effect is dominated by the positive effect of
330	additional heat units.

^b Combined winter and spring wheat

Variables	Wheat	Maize	Rice
CO ₂	0.024***	-0.027	0.007
	(3.303)	(-0.266)	(0.173)
CO ₂ -squared	-0.00002***	0.00001	0.00000
	(-2.846)	(0.113)	(0.113)
Temperature	-2.304***	1.956***	1.889^{*}
	(-5.146)	(3.425)	(1.916)
Temperature-squared	0.054^{***}	-0.054***	-0.041**
	(4.558)	(-3.217)	(-2.507)
$CO_2 \times Temperature$	0.00001	0.001	-0.0003
	(0.053)	(0.928)	(-1.636)
FACE	11.364***		
	(5.899)		
Laboratory	6.325***		
	(8.808)		
Closed-top container	6.262***		
	(3.731)		
Glasshouse	8.429***		
	(7.485)		
Open-top container	9.620***		-4.596**
	(7.068)		(-4.784)
Controlled environment chamber			-2.834**
			(-3.095)
Constant	4.881***	5.021***	10.783**
	(6.341)	(11.755)	(6.121)
Observations	144	27	109
Adjusted R-squared	0.711	0.893	0.713

331Table 8: Regression Analysis of Yields for Combined Winter & Spring Wheat, Maize, and

332 Rice, metric tons per hectare^a

^a See footnotes on Table 4. Separate regressions for winter and spring wheat are found in the
 supplementary material.

When winter and spring wheat are combined, we get statistically significant results on CO₂ and temperature, which provides a much clearer picture of their role. The results from the wheat regression are as expected, except the adverse impact of higher temperatures on yield was expected to be somewhat lower. In the wheat specification, the statistically significant positive quadratic term implies that the heat effect increases at higher temperatures. This is seemingly inconsistent with the literature as there are well-established diminishing effects.

341 Yield Measure: Grams per Plant

342 The regression results when yields are measured in g/plant are reported in Table 9. Maize is not 343 included due to too few observations, while separate data for winter and spring wheat are not 344 relevant in these experiments. The effect of CO₂ on yields is statistically insignificant in each of 345 the wheat, rice and soybean regressions, except for the interaction effect between CO₂ and 346 temperature in the wheat regression. It indicates that, when increased atmospheric CO₂ is 347 combined with higher temperatures, wheat yields will increase; however, although the parameter 348 estimate is significant at the 1% level, the impact of CO₂ on yield is quite small even when there 349 is a considerable increase in temperature. The lack of statistical significance for CO₂ implies that 350 we are unable properly to identify the effect in the individual crop regressions when yield is 351 measured in g/plant.

352 When looking at the temperature effect on wheat yields, we get a statistically significant 353 negative linear term which is more consistent with literature that projects negative effects from 354 global warming (although the magnitude of the estimate is unreasonable). However, given the 355 statistically significant parameter estimate on temperature squared, we find that, contrary to 356 expectation, increases in temperature will cause wheat yields to decline, but after some point, as 357 temperatures continue to rise, yields will increase. For rice, the estimated coefficients on 358 temperature and temperature squared are statistically significant (at 5% and 10% levels, 359 respectively), indicating that yields increase with temperature but at a diminishing rate. These 360 values are more in line with the literature than those associated with the associated t/ha regression 361 in Table 8. Temperature appears to have no statistically significant effect on soybean yields.

Variables	Wheat	Rice	Soybean
CO_2	-0.005	0.073	-0.336
	(-0.170)	(0.507)	(-1.081)
CO ₂ -squared	-0.00002	-0.00004	0.0002
	(-0.744)	(-0.368)	(1.065)
Temperature	-106.662***	10.53**	-4.036
	(-11.459)	(2.645)	(-0.290))
Temperature-squared	3.196***	-0.191***	0.021
	(11.336)	(-3.197)	(0.081)
$CO_2 \times temperature$	0.002^{***}	0.0004	0.006
	(3.222)	(0.112)	(0.781)
Laboratory	5.898		
	(1.507)		
Controlled-environment chamber	-81.660***		
	(-9.659)		
Glasshouse	-157.631***	63.983***	17.008^*
	(-11.621)	(9.919)	(1.827)
Closed-top container			-30.061**
			(-2.145)
Open-top container	19.555***		107.436***
	(5.019)		(4.221)
Constant	225.558***	-6.854	49.591***
	(12.476)	(-0.631)	(3.367)
Observations	78	82	49
Adjusted R-squared	0.876	0.782	0.825

Table 9: Regression Analysis of Yields for Wheat, Rice and Soybean, Yield Measured in
 g/plant^a

^a See footnotes to Table 4.

365 Marginal Effects

The marginal effects of changes in atmospheric CO₂ concentration and temperature are found in Table 10. To analyze marginal effects and their respective turning points, we need to evaluate them using crop-specific summary statistics for temperature and CO₂, which are found in Table 7. We only report those marginal effects that exhibit statistically significant parameters. It is clear from the summary statistics regarding average yields that imposing a common marginal effect across crops is incorrect and our earlier model is not capturing crop-specific effects.

372	Table 10: Marginal Effects of CO2 and Temperature by Crop ^a			
	Crop	CO_2	Temperature	
	Measure of Yield: tonnes per hectare (t/ha)			
	Wheat	$0.024 - 0.00004 \text{ CO}_2 + 0.00001 (T - \overline{T}) -2.5$	$304 + 0.108 \text{ T} + 0.00001 (\text{CO}_2 - \overline{\text{CO}_2})$	
	Maize	$-0.027 + 0.00002 \text{ CO}_2 + 0.001 (\text{T} - \overline{\text{T}}) $ 1	$.956 - 0.108 \text{ T} + 0.001 (\text{CO}_2 - \overline{\text{CO}_2})$	
	Rice	$0.007 + 0.00000 \text{ CO}_2 - 0.0003 (\text{T} - \overline{\text{T}})$ 1.	$889 - 0.082 \text{ T} - 0.0003 \text{ (CO}_2 - \overline{\text{CO}_2}\text{)}$	
		Measure of Yield: grams p	per plant (g/plant)	
	Wheat	$-0.005 - 0.00004 \text{ CO}_2 + 0.002 (\text{T} - \overline{\text{T}}) -106$	$5.662 + 6.392 \text{ T} - 0.002 (\text{CO}_2 - \overline{\text{CO}_2})$	
	Rice	$0.073 - 0.00008 \text{ CO}_2 + 0.0004 (\text{T} - \overline{\text{T}})$ 10.53	$3 - 0.382 \text{ T} - 0.0004 (\text{CO}_2 - \overline{\text{CO}_2})$	
	Soybean	$-0.336 + 0.0002 \text{ CO}_2 + 0.006 (\text{T} - \overline{\text{T}}) -4.026 (\text{T} - \overline{\text{T}})$	$36 + 0.042 \text{ T} - 0.006 (\text{CO}_2 - \overline{\text{CO}_2})$	
373 374 375	The margin	ed as the partial derivative of yield with respect to O_2 (temperature) can be evaluated we can evaluate the marginal effect without the interval of O_2 (temperature) can be evaluated by a can evaluate the marginal effect without the interval of O_2 (temperature) can be evaluated by a can evaluate the marginal effect without the interval of O_2 (temperature) can be evaluated by a can evaluate the marginal effect without the interval of O_2 (temperature) can be evaluated by a can evaluate the marginal effect without the interval of O_2 (temperature) can be evaluated by a can evaluate the marginal effect without the interval of O_2 (temperature) can be evaluated by a can evaluate the marginal effect.	at the mean of temperature (CO_2)	
376	For	r the t/ha regression analysis in Table 10, we get pro	operly signed CO ₂ -fertilization effects	
377	for wheat a	and rice, and maize and rice for temperature effect	cts. For the g/plant analysis, we only	
378	get a proper sign for the CO ₂ -fertilization and temperature effect for rice. Thus, it may not be			
379	appropriate	e to evaluate tipping points from a statistical po	int given the available data. This is	
380	further exhi	nibited by lack of coverage with respect to the inter	raction between CO ₂ and temperature	
381	(see supple	ementary material). It is not likely that underlying f	functional relationships between CO ₂ ,	
382	temperature	re, and crop yields are systematically different. Rat	her, it is more plausible that there are	
383	differences	differences in the extent to which CO ₂ and temperature affect crop yields and we are unable to		
384	properly un	ncover these effects in all crops. For those that we	e do, the substantive CO ₂ -fertilization	
385	effect is cle	early of importance.		

372 Table 10: Marginal Effects of CO₂ and Temperature by Crop^a

5. DISCUSSION

387 Current research on climate change focuses on the negative impact that climate change will have388 on crop yields. What seems to be downplayed in the discussion is the windfall gains from rising

389 atmospheric CO₂ – the benefits of CO₂-fertilization. While there are negative effects from 390 amplified CO₂ levels, there are beneficial impacts for the agricultural sector. As demonstrated in 391 this study, increases in atmospheric CO_2 and temperatures in line with what the IPCC [50] has 392 projected are likely to improve food security. Only if temperatures rise beyond current projections 393 will the negative effect of higher temperatures offset the beneficial effect from CO₂ fertilization. 394 At current temperatures, the CO₂-fertilization effect on yield appears unbounded, although its 395 impact diminishes with increases in the concentration of CO₂ in the atmosphere. Overall, yields of 396 some major crops are likely to increase within the range of CO₂ concentrations and temperatures 397 projected by the IPCC. What is ignored, however, are potential technological changes due to new 398 crop varieties, use of enhanced farm management techniques (e.g., drones that identify infestations 399 of weeds within a field and target herbicide applications), and, importantly, yield increases and 400 other potential benefits from genetic engineering. In particular, there will be genetic modifications 401 that tailor new species of crops to the changing climate and allow for further improvement in 402 vields.

403 There is a clear need for more extensive FACE research in different regions of the world. 404 There are a lot of experiments in similar, temperate climates that simply confirm the same facts. If 405 more experiments were conducted in arid and tropical regions, the implications for developing 406 countries could be better recognized and growth opportunities seized. Without high quality 407 research in these regions, the true effect of climate change in developing countries is hard to 408 extrapolate from results based on temperate countries. This is apparent from the 'heat maps' 409 reported in the supplementary material. They show a sheer lack of overlap between deciles of both 410 our CO₂ and temperature data.

411

The extent of missing data reported in g/plant is starker than t/ha; however, the t/ha data

412 still have severe limitations. Without having more data from varied experiments, the interaction 413 effects of CO₂ and temperature on crop yields are hard to quantify as we do not have a complete 414 analysis of these two explanatory variables across different levels. This reinforces our point that 415 more research needs to be devoted to this area so that we can better quantitatively and qualitatively 416 evaluate the risk that climate change poses for food security.

417 The analysis in this study demonstrates the importance of taking the CO_2 -fertilization effect 418 into account, and the need to incorporate it within future analyses of food security. It indicates the 419 need for more research on crop yields in developing countries and areas most at risk from global 420 warming. One possible avenue is to adopt FACE experiments more broadly as they simulate 421 elevated CO_2 under ordinary field conditions. Such experiments are likely ideal for evaluating the 422 future impacts of rising CO_2 and the potential for mitigating the projected negative effects of global 423 warming.

424

6. AUTHOR CONTRIBUTIONS

- 425 **Conceptualization:** GCVK
- 426 **Data curation:** BM, ZZ
- 427 Formal Analysis: BM, GCVK, ZZ
- 428 **Funding Acquisition:** GCVK
- 429 **Investigation:** BM, ZZ
- 430 Methodology: BM, GCVK, ZZ
- 431 **Project administration:** GCVK
- 432 Supervision: GCVK
- 433 Validation: BM, GCVK
- 434 Writing: BM, GCVK, ZZ

435 7. AGKNOWLEDGMENTS
436 The authors acknowledge the support of the Natural Sciences and Engineering Research Council
437 of Canada (NSERC). They also wish to thank Chris Auld for guidance with the regression analysis.
438

cited ., ution in earch <u>e.gov/</u> recent
tion in earch e.gov/
recent
m:
in the
ronto,
gress
d water Dec I:
Rev
<u>)006-</u>
t for ble <u>hite_Ec</u>

- 11. Reuveni J, Bugbee B. Very high CO₂ reduces photosynthesis, dark respiration and yield in wheat. Ann Bot. 1997 Oct [cited July 5];80(4):539-46. Available from: <u>https://www.jstor.org/stable/42764941?seq=1#metadata_info_tab_contents</u>
 12. Abebe A, Pathak H, Singh S, Bhatia A, Harit R, Kumar V. Growth, yield and quality of maize with elevated atmospheric carbon dioxide and temperature in north-west India. Agric Ecosyst Environ[internet]. 2016 Feb [cited July 5];218:66-72. Available from:
- Agric Ecosyst Environ[internet]. 2016 Feb [cited July 5];218:66-72. Available from
 https://www.sciencedirect.com/science/article/abs/pii/S0167880915301493 DOI:
 10.1016/j.agee.2015.11.014
- 486
 486
 487
 487
 488
 488
 488
 489
 489
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
- 490 14. Baker J. Yield responses of southern us rice cultivars to CO₂ and temperature. Agric For
 491 Meteorol. 2004 Sep [cited July 6];122:129-37. Available from:
 492 <u>https://pubag.nal.usda.gov/download/42437/PDF</u>
- 493 15. Baker J, Allen LH, Boote KJ. Growth and yield response of rice to carbon dioxide
 494 concentration. J Agri Sci. 1990 Dec [cited July 6];115(3):313-20. Available from:
 495 <u>https://www.cambridge.org/core/journals/journal-of-agricultural-science/article/growth-</u>
 496 <u>and-yield-responses-of-rice-to-carbon-dioxide-</u>
 497 <u>concentration/4B4E18C5E11B266FAA9DDBA3C386551F</u> DOI:
 498 10.1017/S0021859600075729
- 499 16. Baker J, Allen L Jr., Boote K. Response of rice to carbon dioxide and temperature. Agric For
 500 Meteorol. 1992 Aug [cited July 6]; 60(3-4):153-66. Available from:
 501 <u>https://www.sciencedirect.com/science/article/pii/0168192392900353</u> DOI:
 502 10.1016/0168-1923(92)90035-3
- 17. Baker J, Allen L Jr., Boote K, Jones P, Jones J. Response of soybean to air temperature and
 carbon dioxide concentration. Crop Sci. 1989 Jan [cited July 6];29:98-105. Available
 from:
 <u>https://www.researchgate.net/profile/Leon_Allen/publication/250114682_Response_of_S</u>
- 507oybean to Air Temperature and Carbon Dioxide Concentration/links/58e7c7be458515085e30dcacdc3/Response-of-Soybean-to-Air-Temperature-and-Carbon-Dioxide-509Concentration.pdf
- 18. Batts G, Ellis R, Morison J, Nkemka P. Yield and partitioning in crops of contrasting
 cultivars of winter wheat in response to CO₂ and temperature in field studies using
 temperature gradient tunnels. J Agri Sci. 1998 Feb[cited July 5];130(1):17-27. Available
- 513 from: <u>https://www.cambridge.org/core/journals/journal-of-agricultural-</u>
- 514 <u>science/article/yield-and-partitioning-in-crops-of-contrasting-cultivars-of-winter-wheat-</u>
- 515in-response-to-co2-and-temperature-in-field-studies-using-temperature-gradient-516tunnels/6EA457C5234B9B9F786D0756F0D9848C DOI: 10.1017/S0021859697005017
- 517 19. Bugbee B, Spanarkel B, Johnson S, Monje O, Koerner G. CO₂ crop growth enhancement and
 518 toxicity in wheat and rice. Adv Space Res. 1994 Nov[cited July 5];14(11):257-67.
 519 Available from: <u>https://www.sciencedirect.com/science/article/pii/0273117794903069</u>
 520 DOI: 10.1016/0273-1177(94)90306-9

521 522	20. Conroy J, Seneweera S, Rogers G. Influence of rising atmospheric CO ₂ concentrations and temperature on growth, yield and quality of cereal crops. Aust J Plant Physiol. 1994[cited
523 524 525 526 527 528	July 5];21:741-58. Available from: <u>https://www.researchgate.net/profile/Saman_Seneweera/publication/200074251_Influenc</u> <u>e_of_Rising_Atmospheric_CO_2_Concentrations_and_Temperature_on_Growth_Yield</u> <u>and_Grain_Quality_of_Cereal_Crops/links/5bd9d2d292851c6b279c83f3/Influence-of- Rising-Atmospheric-CO-2-Concentrations-and-Temperature-on-Growth-Yield-and- <u>Grain-Quality-of-Cereal-Crops.pdf</u> DOI: 10.1071/PP9940741</u>
529 530 531 532	 21. Fiscus E, Reid C, Miller J, Heagle A. Elevated CO₂ reduces O₃ flux and O₃-induced yield losses in soybeans: Possible implications for elevated CO₂ studies. J Exp Bot. 1997 Feb[cited July 7];48(2):307-13. Available from: https://academic.oup.com/jxb/article/48/2/307/652843 DOI: 10.1093/jxb/48.2.307
533 534 535	22. Gifford R. Growth and yield of CO ₂ -enriched wheat under water-limited conditions. Aust J Plant Physiol. 1979[cited July 5];6(7):367-78. Available from: http://www.publish.csiro.au/fp/PP9790367 DOI: 10.1071/PP9790367
536 537 538 539	23. Gifford R. Growth pattern, carbon dioxide exchange and dry weight distribution in wheat growing under differing photosynthetic environments. Aust J Plant Physiol. 1997 Jan [cited July 5];4(1):99-110. Available from: <u>http://www.publish.csiro.au/fp/PP9770099</u> DOI: 10.1071/PP9770099
540 541 542 543	24. Heagle A, Miller J, Pursley W. Growth and yield responses of winter wheat to mixtures of ozone and carbon dioxide. Crop Sci. 2000 Nov [cited July 7];40(6):1656-64. Available from: <u>https://dl.sciencesocieties.org/publications/cs/abstracts/40/6/1656</u> DOI: 10.2135/cropsci2000.4061656x
544 545 546 547	25. Manderscheid R, Weigel H. Do increasing atmospheric CO ₂ concentrations contribute to yield increases of German crops? J Agron Crop Sci. 1995 Sep[cited July 10];175:73-82. Available from: <u>https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1439-037X.1995.tb01132.x</u> DOI: <u>10.1111/j.1439-037X.1995.tb01132.x</u>
548 549 550 551 552	26. Manderscheid R, Weigel H. Photosynthetic and growth responses of old and modern spring wheat cultivars to atmospheric CO ₂ enrichment. Agric Ecosyst Environ. 1997 June [cited July 10];64(1):65-73. Available from: <u>https://www.sciencedirect.com/science/article/abs/pii/S0167880997000200</u> DOI: <u>10.1016/S0167-8809(97)00020-0</u>
553 554 555 556	27. Mayeux H, Johnson H, Polley H, Malone S. Yield of wheat across a subambient carbon dioxide gradient. Glob Chang Biol. 1997 June [cited July 10];3(3):269-78. Available from: <u>https://ui.adsabs.harvard.edu/abs/1997GCBio3.269M/abstract</u> DOI: <u>10.1046/j.1365-2486.1997.00074.x</u>
557 558 559 560	28. Mckee I, Woodward I. CO ₂ enrichment responses of wheat: Interactions with temperature, nitrate and phosphate. New Phytol. 1994 June [cited July 10];127(3):447-53. Available from: <u>https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1994.tb03962.x</u> DOI: <u>10.1111/j.1469-8137.1994.tb03962.x</u>

561 562 563 564 565	29. Meng F, Zhang J, Yao F, Hao C. Interactive effects of elevated CO ₂ concentration and irrigation on photosynthetic parameters and yield of maize in northeast China. PLoS One[internet]. 2014 Aug [cited July 10];9(8). Available from: <u>https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0098318</u> DOI: <u>10.1371/journal.pone.0105898</u>
566 567 568 569	30. Moya T, Ziska L, Namuco O, Olszyk D. Growth dynamics and genotypic variation in tropical, field-grown paddy rice (oryza sativa l.) in response to increasing carbon dioxide and temperature. Global Change Biol. 1998 Oct[cited July 10];4(6):645-56. Available from: <u>https://pubag.nal.usda.gov/pubag/downloadPDF.xhtml?id=40429&content=PDF</u>
570 571 572 573	 31. Mulholland B, Craigon J, Black C, Colls J, Atherton J, Landon G. Effects of elevated carbon dioxide and ozone on the growth and yield of spring wheat (triticum aestivum l.). J Exp Bot. 1997 Jan [cited July 10];48(1):113-22. Available from: https://academic.oup.com/jxb/article/48/1/113/578086 DOI: 10.1093/jxb/48.1.113
574 575 576 577 578	 32. Mulholland B, Craigon J, Black C, Colls J, Atherton J, Landon G. Growth, light interception and yield responses of spring wheat (triticum aestivum l.) grown under elevated CO₂ and O₃ in open-top chambers. Global Change Biol. 1998 Jan [cited July 10];4:121-30. Available from: <u>https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-2486.1998.00112.x</u> DOI: <u>10.1046/j.1365-2486.1998.00112.x</u>
579 580 581 582 583	 33. Otera M, Kokubun M, Tabei H, Matsunami T, Maekawa T, Okada M. Is yield enhancement by CO₂ enrichment greater in genotypes with a higher capacity for nitrogen fixation? Agric For Meterol. 2011 Oct [cited July 10;151(10):1385-93. Available from: <u>https://www.sciencedirect.com/science/article/pii/S0168192311001808?via%3Dihub</u> DOI: <u>10.1016/j.agrformet.2011.06.003</u>
584 585 586 587 588	34. Pleijel H, Gelang J, Danielsson H, Younis S, Karlsson P, Wallin G, et al. Effects of elevated carbon dioxide, ozone and water availability on spring wheat growth and yield. Physiol Plant. 2000 June [cited July 10];108:61-70. Available from: https://onlinelibrary.wiley.com/doi/full/10.1034/j.1399-3054.2000.108001061.x DOI: https://onlinelibrary.wiley.com/doi/full/10.1034/j.1399-3054.2000.108001061.x
589 590 591 592 593	 35. Prasad P, Allen L Jr., Boote K. Crop responses to elevated carbon dioxide and interaction with temperature: Grain legumes. J Crop Improv. 2008 Sep [cited July 10];13(1):113-55. Available from: <u>https://pubag.nal.usda.gov/pubag/downloadPDF.xhtml?id=41878&content=PDF</u> DOI: 10.1300/J411v13n01_07
594 595 596 597 598	36. Qiao Y, Miao S, Li Q, Jin J, Luo X, Tang C. Elevated CO ₂ and temperature increase grain oil concentration but their impacts on grain yield differ between soybean and maize grown in a temperate region. Sci Total Environ[internet]. 2019 May [cited July 10];666:405-13. Available from: <u>https://www.ncbi.nlm.nih.gov/pubmed/30802656</u> DOI: <u>10.1016/j.scitotenv.2019.02.149</u>
599 600 601 602	 37. Rawson H. Yield responses of two wheat genotypes to carbon dioxide and temperature in field studies using temperature gradient tunnels. Plant Physiol. 1995 [cited July 10];22:23-32. Available from: <u>http://www.publish.csiro.au/FP/PP9950023</u> DOI: 10.1071/PP9950023

603 604 605 606 607	38. Rudorff B, Mulchi C, Daughtry C, Lee E. Growth, radiation use efficiency, and canopy reflectance of wheat and corn grown under elevated ozone and carbon dioxide atmospheres. Remote Sens Environ. 1996 Feb [cited July 10];55(2):163-73. Available from: <u>https://www.sciencedirect.com/science/article/abs/pii/0034425795002081</u> DOI: <u>10.1016/0034-4257(95)00208-1</u>
608 609 610 611 612 613	 39. Sionit N, Strain B, Hellmers H. Effects of different concentrations of atmospheric CO₂ on growth and yield components of wheat. J Agri Sci. 1981 Oct [cited July 10];97(2):335-9. Available from: <u>https://www.cambridge.org/core/journals/journal-of-agricultural-science/article/effects-of-different-concentrations-of-atmospheric-co2-on-growth-and-yield-components-of-wheat/65338E91540439341A93152DBCF0FC71 DOI: 10.1017/S0021859600040764</u>
614 615 616 617	 40. Teramura A, Sullivan J, Ziska L. Interactions of elevated ultraviolet-b radiation and CO₂ on productivity and photosynthetic characteristics in wheat, rice, and soybean. Plant Physiol. 1990 [cited July 10];94:470-5. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1077255/pdf/plntphys00811-0088.pdf
618 619 620 621	41. Van Oijen M, Schapendonk A, Jansen M, Pot C, Maciorowski R. Do open-top chambers overestimate the effects of rising CO ₂ on plants? An analysis using spring wheat. Glob Change Biol. 1999 [cited July 10];5:411-21. Available from: <u>http://www.plant- dynamics.nl/wp-content/uploads/2017/09/Gchange-marcel.pdf</u>
622 623 624 625 626	42. Wang W, Cai C, Lam S. Elevated CO ₂ cannot compensate for japonica grain yield losses under increasing air temperature because of the decrease in spikelet density. Eur J Agron[internet]. 2018 Sept [cited July 10];99:21-9. Available from: <u>https://www.sciencedirect.com/science/article/abs/pii/S116103011830176X?via%3Dihub</u> DOI: <u>10.1016/j.eja.2018.06.005</u>
627 628 629 630 631	 43. Weigel H, Manderscheid R, Jäger J, Mejer G. Effects of season-long CO₂ enrichment on cereals. I. growth performance and yield. Agric Ecosyst Environ. 1994 April [cited July 10];48(3):231-40. Available from: <u>https://www.sciencedirect.com/science/article/abs/pii/0167880994901058</u> DOI: 10.1016/0167-8809(94)90105-8
632 633 634 635 636 637 638	 44. Wheeler T, Batts G, Ellis R, Hadley P, Morison J. Growth and yield of winter wheat (triticum aestivum) crops in response to CO₂ and temperature. J Agric Sci. 1996 Aug [cited July 5];127(1):37-48. Available from: <u>https://www.cambridge.org/core/journals/journal-of-agricultural-science/article/growth-and-yield-of-winter-wheat-triticum-aestivum-crops-in-response-to-co2-and-temperature/59DBEB4697E7F01EDA3D069DEC10547B DOI: <u>10.1017/S0021859600077352</u></u>
639 640 641 642 643 644	 45. Xiao G, Liu W, Xu Q, Sun Z, Wang J. Effects of temperature increase and elevated CO₂ concentrations with supplemental irrigation, on the yield of rain-fed spring wheat in a semiarid region of China. Agric Water Manag. 2005 Ma y[cited July 5];74(3):243-55. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0378377404003245?via%3Dihub DOI: https://www.sciencedirect.com/science/article/abs/pii/S0378377404003245?via%3Dihub

645 646 647 648 649	 46. Xiao G, Zhang Q, Wang R, Xiong Y. Effects of elevated CO₂ concentration, supplemental irrigation and nitrogenous fertilizer application on rain-fed spring wheat yield. Acta Ecol Sin. 2009 Sept [cited July 5];29(4):205-10. Available from: https://www.sciencedirect.com/science/article/abs/pii/S1872203209000420?via%3Dihub DOI: https://www.sciencedirect.com/science/article/abs/pii/S187220320900420?via%3Dihub DOI: https://www.sciencedirect.com/science/article/abs/pii/S187220320900420?via%3Dihub DOI: https://www.sciencedirect.com/scienc
650 651 652 653 654	 47. Yang L, Huang J, Yang H, Zhu J, Liu H, Dong G. et al. The impact of free-air CO₂ enrichment (face) and n supply on yield formation of rice crops with large panicle. Field Crops Res. 2006 Aug [cited July 10];98(2-3):141-50. Available from: https://www.sciencedirect.com/science/article/pii/S0378429006000050 DOI: <a article="" href="https://www.sciencedirect.com/sciencedirect.com/sciencedirect.com/sciencedirect.com/sciencedirect.com/sciencedirect.com/sciencedirect.com/sciencedirect.com/sciencedirect.com/sciencedirect.com/sciencedirect.com/sciencedirect.com/scien</td></tr><tr><td>655
656
657
658
659</td><td> 48. Zhang G, Sakai H, Usui Y, Tokida T, Nakamura H, Zhu C, et al. Grain growth of different rice cultivars under elevated CO<sub>2</sub> concentrations affects yield and quality. Field Crops Res. 2015 Aug[cited July 10];179:72-80. Available from: https://www.sciencedirect.com/science/article/pii/S0378429015001306 DOI: https://www.sciencedirect.com/science/article/pii/S0378429015001306 DOI:

671

9. SUPPLEMENTARY MATERIAL

672 Heat Maps

- 673 When we separate levels of CO₂ and temperature into deciles and generate a heat map, we see a
- 674 severe lack of coverage. This leads us to believe that we cannot accurately interpret the interaction
- 675 effect between CO₂ and temperature on crop yields as we miss a large portion of the *combinations*
- 676 between them. This is apparent in the t/ha data and even more so in the g/plant data.

679 Spring versus Winter Wheat

In the analysis, spring and winter wheat yield data have been combined in the crop-level regressions. From Figure S1, it is clear that there is no statistically-significant difference between spring and wheat yields when yield is measured in t/ha, but it is questionable if this should be done when yield is measured in terms of g/plant. Winter and spring wheat are (typically) the same cultivar; they are just planted at different times of the year.

686 Figure S1: 95% Confidence Intervals for Yields for Wheat (Spring and Winter Wheat Combined)

687 Consider separate winter wheat and spring wheat regressions; these are indicated in Tables 688 S1 and S2. We again exclude spring wheat from the regression analysis in Table S2 as we are 689 simply asking too much of the model given only 15 observations.

Variables	Wheat	Spring Wheat	Rice
CO ₂	0.027^{***}	0.025	0.007
	(3.591)	(1.405)	(0.173)
CO ₂ -squared	-0.00002***	-0.00001	-0.00000
	(-3.290)	(-1.037)	(0.113)
Temperature	-3.290***	0.088	1.889^{*}
	(-5.822)	(0.043)	(1.916)
Temperature-squared	0.076^{***}	-0.002	-0.041**
	(5.493)	(-0.035)	(-2.507)
$CO_2 \times Temperature$	0.0001	-0.001	-0.0003
	(0.295)	(-0.980)	(-1.636)
Closed-top container	2.241***		
	(4.122)		
Glasshouse	-0.569		
	(1.023)		
Open-top chamber		-2.177***	-4.596***
		(-3.545)	(-4.784)
Controlled-environment chamber			-2.834***
			(-3.095)
FACE		6.148^{***}	
		(2.856)	
Constant	14.883***	1.262	10.783***
	(9.023)	(0.260)	(6.121)
Observations	89	55	109
Adjusted R-squared	0.611	0.886	0.713

690 Table S1: Regression Analysis of t/ha Yields for All Wheat, Spring Wheat, and Rice^a

691 ^a See footnote on Table 4 in the text.

692

693

694	Table S2: Regression Analysis of g/plant Yields for Wheat, Rice, and Soybean ^a			
	Variables	Wheat	Rice	Soybean
	CO ₂	-0.011	0.073	-0.336
		(-0.193)	(0.507)	(-1.081)
	CO ₂ -squared	-0.00001	-0.00004	0.0002
		(-0.284)	(-0.368)	(1.065)
	Temperature	149.985***	10.530**	-4.036
		(22.986)	(2.645)	(-0.290)
	Temperature-squared	-4.770***	-0.191***	0.021
		(-22.986)	(-3.197)	(0.081)
	$CO_2 \times Temperature$	0.002^*	0.0004	0.006
		(1.801)	(0.112)	(0.781)
	Open-top container	-85.563***		107.436***
		(-20.122)		(4.221)
	Closed-top container			-30.061**
				(-2.145)
	Glasshouse	237.605***	63.983***	17.008^{*}
		(21.913)	(9.919)	(1.827)
	Laboratory	-99.176***		
		(-23.549)		
	Constant	-291.744***	-6.854	49.591***
		(-21.269)	(-0.631)	(3.367)
	Observations	63	82	49
	Adjusted R-squared	0.866	0.782	0.825
605	^a Saa faatnata ta Tabla 1 in t	ha taxt		

Table S2: Regression Analysis of g/plant Yields for Wheat, Rice, and Soybean^a 694

695 ^a See footnote to Table 4 in the text.

696